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a b s t r a c t 

Cyber-attacks, with various emerging attack techniques, are becoming increasingly sophisticated and dif- 

ficult to deal with, posing great threats to companies and every individual. Therefore, analyzing attack 

incidents and tracing the attack groups behind them becomes extremely important. Threat intelligence 

provides a new technical solution for attack traceability by constructing Cybersecurity Knowledge Graph 

(CKG). In this paper, we propose a framework for threat intelligence extraction and fusion, which is 

able to extract, correlate and unify cybersecurity entity-relation triples from structured and unstructured 

data. However, the existing entity and relation extraction for cybersecurity concepts uses the traditional 

pipeline model that suffers from error propagation and ignores the connection between the two subtasks. 

To solve the above problem, we propose a joint entity and relation extraction model for cybersecurity 

concepts. We model the joint extraction problem as a multiple sequence labeling problem, generating 

separate label sequences for different relations, which contain information about the involved entities 

and the subject and object of that relation. Experimental results on Open Source Intelligence (OSINT) 

data show that the F1 value of the joint model is 81.37%, which is better than the previous pipeline 

model. For the knowledge fusion, we propose an improved Levenshtein distance to correlate the same 

entities extracted from different data sources to construct a preliminary CKG, which is demonstrated in 

the Experiments section. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, the damage and impact caused by malicious behav- 

ors in cyberspace such as hacker attacks, frauds, and rumors have 

ecome more serious. Therefore, how to effectively and accurately 

etect cyber attacks as early as possible, analyze attack incidents, 

nd trace the source of attackers and groups has become a severe 

roblem for enterprises and countries. 

The concept of Cyber Threat Intelligence (CTI) was developed 

upplying new theoretic support for cyber-attack source tracing, 

aking it possible to trace the source of a wide range of attacks. 

herefore, many researchers extract and analyze different threat 

ntelligence to generate the Cybersecurity Knowledge Graph (CKG). 

he CKG has the characteristic of strong timeliness and high ac- 

uracy, which can timely and easily detect, respond and defend 

gainst specific targets, providing a new measure for attack source 
� This paper was presented in part at the Proceeding of the 23rd Interna- 

ional Conference on Information and Communications Security (ICICS 2021) (Guo 

t al.(2021)). 
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racking, and can even effectively deal with sophisticated cyber- 

ttacks (e.g., zero-day attacks, advanced persistent threat). 

The key step in constructing CKG is cyber threat intelligence 

xtraction, which involves subtasks such as entity recognition, re- 

ation extraction, and event extraction. Currently, many research 

roups have conducted research on the automated construction 

nd analysis of CKG ( Gao et al., 2021; Husari et al., 2017; Jia et al.,

018; Milajerdi et al., 2019; Piplai et al., 2020a; 2020b; Zhao et al., 

020b ). In terms of CTI information extraction, previous studies are 

edicated to extracting cybersecurity concepts ( Liao et al., 2016; 

ittal et al., 2016; Zhu and Dumitras, 2018 ) and entities ( Ghazi 

t al., 2018; Husari et al., 2018; Zhao et al., 2020a ) from unstruc- 

ured data. This extraction leads to a rich repository of cyberse- 

urity entity-relation triples that precisely delineate the relations 

ithin the cybersecurity realm. For instance, consider the triple 

“sqlite3 in versionc 3.26.0”, “hasVulnerability”, “CVE-2019-5018”). 

ere, “sqlite3 in version 3.26.0” is the subject entity of type “soft- 

are”, “hasVulnerability” is the relation, and “CVE-2019-5018” is 

he object entity of type “vulnerability”. This triple clearly indicates 

hat the software “sqlite3” in version 3.26.0 has a specific vulnera- 

ility referenced as “CVE-2019-5018”. 

The construction of CKG is inseparable from a large number of 

ybersecurity entity-relation triples from different sources. Threat 

ntelligence comes from structured and unstructured data such as 

https://doi.org/10.1016/j.cose.2023.103371
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103371&domain=pdf
https://doi.org/10.13039/501100012166
https://doi.org/10.13039/501100001809
mailto:codesec@scu.edu.cn
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udit logs, network traffic, security alerts, vulnerability databases, 

ecurity bulletins, hacker forums, and social media. These data 

ave the characteristics of multisource, heterogeneous, polysemy, 

nd highly dependent on domain knowledge. Therefore it is diffi- 

ult to effectively integrate data from different sources. More im- 

ortantly, extracting cybersecurity entity-relation triples from un- 

tructured data is a great challenge, and is the key step to con- 

tructing CKG. Existing research on cybersecurity entity and rela- 

ion extraction ( Jones et al., 2015; Pingle et al., 2019 ) uses the tra-

itional pipeline model, named entity recognition first and then re- 

ation extraction, which leads to error propagation and losses sight 

f the relevance between entity recognition and relation extraction. 

To solve the above problem, we propose a framework for threat 

ntelligence extraction and fusion which can extract and correlate 

ybersecurity entity-relation triples from structured and unstruc- 

ured data. For unstructured data, we propose a joint entity and re- 

ation extraction model for cybersecurity concepts, which extracts 

oth cybersecurity entities and relations and generates cybersecu- 

ity triples. Specifically, we use a tagging scheme to convert the 

oint extraction problem into a multiple sequence labeling prob- 

em by generating separate label sequences for different relations 

ontaining information about the related entities and the subject 

nd object of that relation. The joint extraction model applies the 

re-trained model, BERT, to generate word vectors. After extract- 

ng semantic features by BiGRU, the model assigns higher weights 

o relation-related words in the sentences by an attention mech- 

nism. Finally, BiGRU combined with CRF is used to decode and 

onstruct cybersecurity triples. Then, we fuse the entities extracted 

rom different data sources by an improved Levenstein distance to 

orm a preliminary CKG. 

In summary, the main contribution of this paper are as follows: 

• We propose a framework for threat intelligence extraction and 

fusion that can extract and fuse cybersecurity entity-relation 

triples from large-scale structured and unstructured data. These 

triples can be used to construct the CKG. 

• We present a joint entity and relation extraction model for cy- 

bersecurity concepts. The model employs deep learning tech- 

niques to extract entities and relations in sentences simulta- 

neously, avoiding the error propagation of traditional pipeline 

models. The experimental results show that the joint model 

outperforms the traditional pipeline model with an F1 value of 

81.37%. 

• We design a lightweight cybersecurity entity fusion method 

that is optimized for the features of the cybersecurity corpus 

by fusing entities from different sources based on an improved 

Levenshtein distance. 

The rest of the paper is organized as follows: Section 2 dis- 

usses related work, and Section 3 presents our framework for 

hreat intelligence extraction and fusion. Section 4 provides the ex- 

eriments and analysis related to this work. Section 5 summarizes 

he conclusion and proposes future works. 

. Related work 

In this section, we first review the methods for automated con- 

truction and analysis of CKG. Secondly, since the pivotal step of 

KG construction is threat intelligence extraction, we review the 

ork related to CTI extraction including entity recognition, rela- 

ion extraction, and event extraction subtasks. Finally, we present 

he related research on relation extraction and knowledge fusion. 

.1. Cybersecurity knowledge graph 

The Knowledge Graph (KG) was originally proposed by Google. 

t is a knowledge base that integrates information from multi- 
2

le sources, links real-world entities or concepts, and provides 

earch services through semantic retrieval. In the field of cyberse- 

urity, correlating and fusing threat intelligence data from different 

ources to generate the CKG can provide new technical means for 

ituational awareness and attack traceability. 

In the area of automated construction and analysis of CKG, re- 

earchers have also proposed several ideas and approaches in re- 

ent years ( Gao et al., 2021; Husari et al., 2017; Jia et al., 2018; Mi-

ajerdi et al., 2019; Piplai et al., 2020a; 2020b; Zhao et al., 2020b ).

ia et al. (2018) introduced a cybersecurity knowledge base and de- 

uction rules based on a quintuple model. Gao et al. (2021) pro- 

osed ThreatRaptor, a system that facilitates threat hunting in 

omputer systems using OSINT. The system uses an unsupervised, 

ightweight, and accurate NLP pipeline to extract structured threat 

ehaviors from unstructured OSINT text. Piplai et al. (2020b) de- 

cribed a system that extracts information from After Action Re- 

orts (AARs) and represents the extracted information in a CKG. 

hao et al. (2020b) demonstrated a threat intelligence framework 

HINTI). HINTI first recognizes IOCs and models the interdependent 

elations between IOCs using heterogeneous information networks 

HINs), and then proposes a threat intelligence computing frame- 

ork based on graph convolutional networks to explore complex 

ecurity knowledge. Although these approaches have made initial 

ttempts and achieved good results in CKG construction, further 

esearch is needed in the key steps of knowledge graph construc- 

ion. 

.2. Threat intelligence extraction 

The construction of a knowledge graph can be divided into 

hree steps, including information extraction, knowledge fusion, 

nd knowledge reasoning. Among them, information extraction 

lays a decisive role in the quality of the generated knowledge 

raph. Information extraction for threat intelligence is divided into 

everal subtasks, including entity recognition ( Ghazi et al., 2018; 

usari et al., 2018; Liao et al., 2016; Mittal et al., 2016; Zhao et al.,

020a; Zhu and Dumitras, 2018 ), relation extraction ( Jones et al., 

015; Pingle et al., 2019 ) and event extraction ( Satyapanich et al., 

020 ). 

In terms of cybersecurity entity and concept recognition, 

ittal et al. (2016) proposed a framework for extracting threat in- 

elligence from Twitter, CyberTwitter, which automates the extrac- 

ion of security vulnerability concepts. Liao et al. (2016) introduced 

ACE for automatically extracting IOCs and their context in the 

entences of technical articles. Zhu and Dumitras (2018) designed 

hainsmith, an IOC extraction system that collects IOCs from secu- 

ity articles and classifies them according to the stages of the Kill 

hain. Ghazi et al. (2018) used natural language processing tech- 

iques to extract threat sources from unstructured web threat in- 

ormation sources and provided comprehensive threat reports in 

he STIX (2017) standard, which is used for the accurate and effi- 

ient exchange of cyber threat intelligence. 

Due to the lack of a well-labeled corpus for training, rela- 

ively few studies have been conducted on cybersecurity relation 

xtraction and event extraction compared to entity recognition. 

ingle et al. (2019) proposed RelExt, a deep learning-based cy- 

ersecurity relation extraction method for constructing CKGs. The 

odel uses a pipeline approach, first identifying entities in the text 

y an entity recognizer then classifying the relations by a deep 

earning model. Jones et al. (2015) implemented a semi-supervised 

ybersecurity relation extraction method based on a bootstrapping 

lgorithm to extract relations. Satyapanich et al. (2020) proposed 

ASIE, a security event extraction system that uses deep neural 

etworks and can incorporate rich linguistic features and word 

mbeddings for extracting security events related to cyber-attacks 

nd vulnerabilities. 
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.3. Relation extraction 

As a subtask of information extraction, relation extraction has 

 long research history. The main approaches to relation extrac- 

ion can be broadly divided into three categories, including early 

ule-based approaches ( Iria, 2005; McDonald et al., 2005 ); tradi- 

ional machine learning-based approaches ( Culotta and Sorensen, 

0 04; Jiang and Zhai, 20 07 ); and deep learning-based approaches 

 Bekoulis et al., 2018; Miwa and Bansal, 2016; Wei et al., 2020; 

eng et al., 2014; Zheng et al., 2017 ). In recent years, the latest re-

earch results in the field of relation extraction have focused on 

eep learning models ( Dai et al., 2019; Fu et al., 2019; Sun et al.,

018; Yuan et al., 2020 ). The advantage of deep learning meth- 

ds is that they do not require manual extraction of features nor a 

arge amount of domain knowledge. 

Currently, there are two main approaches to relation extraction 

ased on deep learning: the pipeline approach and the joint ap- 

roach. The pipeline approach performs relation classification af- 

er extracting all the entities. Zeng et al. (2014) first applied CNN 

o relation extraction to automatically extract lexical and sentence- 

evel features. Wei et al. (2020) proposed a novel cascaded binary 

nnotation framework (CASREL) that models relations as functions 

hat map subjects to objects in a sentence, which naturally handles 

he overlapping triple problems. Although these methods achieve 

romising results, the pipeline architectures suffer from the prob- 

em of error propagation. In addition, neglecting the relationship 

etween the two tasks of entity recognition and relation extrac- 

ion for training can also affect the effectiveness of relation ex- 

raction. Therefore, to construct the bridge between the two sub- 

asks, building a joint model that extracts entities together with 

elations simultaneously has attracted much attention. Miwa and 

ansal (2016) proposed a joint relation extraction model based on 

hared parameters, which captures both word sequences and de- 

endency tree substructure information for end-to-end relation ex- 

raction via LSTM. Bekoulis et al. (2018) propose a joint model 

hat uses a CRF layer to model the entity recognition task and 

he relation extraction task as a multi-headed selection problem. 

heng et al. (2017) proposed a new tagging scheme that can con- 

ert the joint extraction task to a sequence labeling problem. 

uan et al. (2020) proposed a relation-based attention network 

RSAN) to jointly extract entities and relations using a relation- 

ware attention mechanism. 

.4. Knowledge fusion 

Due to the existence of duplicate and complementary informa- 

ion in data from different sources, knowledge fusion is proposed 

o study how the same entity or concept from multiple sources 

an be fused to form a high-quality knowledge base ( Zhao et al., 

020c ). Its necessity has been explained in the recent relevant 

tudies ( Alves et al., 2020; Gonzalez-Granadillo et al., 2021; Liu 

t al., 2022; Yuan et al., 2021 ). Knowledge fusion needs to be per-

ormed at two levels: at the ontology level, equivalence or similar 

lasses, relations, and attributes between different ontologies need 

o be found, i.e., ontology matching; at the entity level, the same 

bjects from different sources need to be correlated and combined, 

.e., entity alignment. 

Ontology matching requires abstracting a myriad of concepts 

nd complex relations in the cybersecurity domain into a seman- 

ic network. Iannacone et al. (2015) proposed STUCCO, an ontology 

or building CKGs, integrating 13 different formats of cybersecurity 

ata sources. Building on this foundation, Syed et al. (2016) pro- 

osed a Unified Cybersecurity Ontology (UCO). The UCO ontol- 

gy provides a general understanding of the cybersecurity do- 

ain and, in addition to mapping to STIX, UCO extends sev- 

ral related cybersecurity standards, vocabularies, and ontolo- 
3 
ies such as CVE, CCE, CVSS, CAPEC, CYBOX, KillChain, and 

TUCCO. 

Existing entity alignment studies fall into two main cat- 

gories, including similarity-based and embedding-based ap- 

roaches. Similarity-based approaches use information such as 

ntity names, attributes, and relations to compute the similar- 

ty of entity pairs. Lacoste-Julien et al. (2013) proposed a sim- 

le greedy matching algorithm that uses the structural informa- 

ion of the knowledge graph and the similarity metric between 

ntity attributes to align entities on a large-scale knowledge base. 

zevedo et al. (2019) proposed a method to connect different IoCs 

ased on two similarity measures (the n -level correlation) in or- 

er to generate threat intelligence of quality in the form of en- 

iched IoCs. The embedding-based approach maps the triples in 

he knowledge graph to the same vector space and aligns en- 

ities that are similar to each other by computing the distance 

etween entity vectors. Chen et al. (2016) improved the TransE 

 Bordes et al., 2013 ) model by proposing MTransE, which encodes 

ntities and relations for each language in a separate embedding 

pace to achieve cross-language entity alignment. Since knowledge 

raphs are in graph structure, some studies also use graph neu- 

al networks to embed the information of knowledge graphs, for 

xample, Liu et al. (2020) improved the GNN-based entity align- 

ent method by using an attributed value encoder and partition 

he KG into subgraphs to model various types of attribute triples. 

ie et al. (2021) proposed jointly utilizing the global KG structure 

nd entity-specific relational triples to achieve entity alignment. 

In the construction of CKG, a lot of research has been con- 

ucted on the extraction of cybersecurity entities and concepts, 

hile research on cybersecurity relation extraction is still in its in- 

ancy. Existing approaches use traditional pipeline methods, which 

eads to error propagation and loses sight of the relevance be- 

ween entity recognition and relation extraction. Different from 

hese above works, this paper proposes a joint entity and relation 

xtraction model for cybersecurity concepts, which extracts enti- 

ies and relations simultaneously, effectively avoiding the short- 

omings of the traditional pipeline model. In addition, our paper 

urther fuses threat intelligence from different sources through a 

ightweight knowledge fusion algorithm. 

. Framework design 

In this section, we will introduce our proposed framework for 

hreat intelligence extraction and fusion. The ontology of our cy- 

ersecurity knowledge graph references UCO 2.0 ( Syed et al., 2016 ) 

nd STIX 2.0 STIX (2017) . 

• The main entity types include: Indicator, Threat Actor, Attack 

Pattern, Malware, Tool, Campaign, Course of Action, Vulnerabil- 

ity, and Software. 

• The main relation types include: hasProduct, hasVulnerability, 

uses, attributedTo, mitigates, and indicates. 

Our framework is divided into four parts, as shown in Fig. 1 . In

he data collection, threat intelligence data is collected from struc- 

ured data and unstructured data on the internet, and the frame- 

ork processes these two types of data separately. For structured 

ata such as STIX data, we directly obtain the entities or triples by 

ntology matching, as described in Section 3.1 . In the threat intel- 

igence extraction, we propose a joint entity and relation extrac- 

ion model to extract cybersecurity triples from unstructured data, 

s described in Section 3.2 . In the knowledge fusion, we design 

n improved Levenshtein distance to fuse entities from different 

ources based on the characteristics of the cybersecurity corpus, as 

escribed in Section 3.3 . Finally, our framework deposits the cyber- 

ecurity triples extracted and fused from structured and unstruc- 

ured data into the neo4j database to form a preliminary CKG. 
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Fig. 1. The framework for threat intelligence information extraction and fusion. 
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.1. Data collection and structured data process 

The framework regularly collects raw data from various sources 

uch as existing attack and defense knowledge bases, intelligence 

haring platforms, vulnerability databases, security bulletins, and 

PT reports. These data include structured data and unstructured 

ata, which are processed separately by the framework. The struc- 

ured data only requires simple steps before importing into the 

nowledge graph, while the unstructured data requires a more 

omplex model to extract the cybersecurity triples from it. 

There exist many structured threat intelligence data, including 

ttack and defense knowledge bases (e.g., ATT&CK Strom et al., 

018 ) and intelligence sharing platforms (e.g., MISP, 2021; Unit 42, 

021; WatcherLab, 2021 ), which are maintained by professional 

eams with high quality and rich content, usually in a structured 

orm such as STIX. Collecting these structured data can quickly get 

 large amount of reliable threat intelligence data. We store the en- 

ities and relations in these structured data directly into the neo4j 

atabase after ontology matching. In addition, the data sources are 

ot limited to those platforms mentioned above. Structured data 

rom other sources can also be extended into our framework after 

ntology matching. 

.2. Joint entity and relation extraction for unstructured data 

To extract threat intelligence from unstructured data such as 

ulnerability descriptions, security bulletins, APT reports, technol- 

gy blogs, and hacker forums, we propose a joint entity and rela- 

ion extraction model for cybersecurity concepts. Our model can 

xtract cybersecurity triples from unstructured data. We briefly 

utline the overall strategy here before discussing details in the 

ollowing subsections. The model takes unstructured threat intel- 

igence data collected from multiple sources as raw input. Then 

he data undergoes a pre-processing process including data clean- 

ng, sentence segmentation, and tokenization to obtain the training 

orpus, which will be fed into the joint extraction model subse- 

uently (see Section 3.2.1 for details). We adopt the cybersecurity 

ntities and relations defined in the UCO 2.0 ( Syed et al., 2016 ) on-

ology and model the joint entity and relation extraction problem 

s a multiple sequence labeling problem by generating a sequence 

f labels for each relation through a specific tagging schema (see 

ection 3.2.2 for details). Each relation label sequence contains in- 

ormation about the entities involved and the subject and object 

f the relation. Our proposed multiple sequence labeling model is 

tructured into an embedding layer, an encoding layer, an attention 

ayer, and a decoding layer (see Section 3.2.3 for details). Finally, 
4 
he model constructs cybersecurity triples based on the label se- 

uences predicted by the model, and these triples will eventually 

e used to construct CKG. 

.2.1. Data preprocess 

Unstructured threat intelligence data is usually stored in rich 

ext documents such as PDF, HTML/XML, JSON, and other formats. 

irst, we use various text parsing tools (e.g. HTMLParser, PDFLib) 

o extract the raw text from these documents. But the extracted 

aw text is not well-formatted. Therefore, we devised some data 

re-processing procedures as follows. 

The first step in preprocessing is data cleaning, where we re- 

ove non-ASCII characters from the text and whitespace charac- 

ers at the beginning and end of each sentence. It is worth not- 

ng that in some threat intelligence data, special types of entities 

re often rewritten to prevent readers from clicking on them by 

istake. For example, the IP address “136.244.119.85” is rewrit- 

en as “136. 244.119[.]85”; the URL http://www.test.com is rewrit- 

en to http://www.test.com ; the email address hacker@test.com is 

ewritten as hacker[at]test.com . We revert this rewritten form to 

ts original form. 

The next step in preprocessing is special entity substitution. In 

he field of cybersecurity, some entities are very different in form 

rom the normal natural language, such as IP, MAC, Hash, URL, 

mail, domain name, file name, and file path. We build regular ex- 

ressions to match these entities from text and replace them with 

atural language strings in the form of “sub type”, where “type” is 

he type of the special entity. For example, we would replace the 

P address “136.244.119.85” with “sub ip”. 

The last step in the preprocessing process is text segmentation, 

hich is the process of converting text into sequences. We use the 

LTK library for sentence segmentation and WordPiece for word 

okenization. 

.2.2. Tagging scheme 

In this section, we will introduce the tagging schema for the 

oint entity and relation extraction. In the field of relation extrac- 

ion, there has been related work ( Dai et al., 2019; Yuan et al., 

020; Zheng et al., 2017 ) on the joint entity and relation extraction 

hrough the construction of a specific tagging schema. For cyber- 

ecurity concepts, the extracted relation usually suffers from the 

ntity overlapping problem that different types of relations shar- 

ng the same entities, so the tagging scheme has to overcome this 

ssue. Our model generates a sequence of labels for each relation 

n UCO 2.0 ( Syed et al., 2016 ). In each tag sequence, we use the

ypical “BIO” signs to locate the entities in the sentence, where “B”

http://www.test.com
http://www.test.com
http://www.hacker@test.com
http://www.hacker[at]test.com
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Fig. 2. An example for tagging scheme. 
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epresents the starting part of the entity, “I” represents the middle 

art of the entity, and “O” is the non-entity part. At the same time, 

e also label the entity as subject or object in the relation, with 

1” representing the subject in the triple and “2” representing the 

bject in the triple. 

Figure 2 shows an example of the tagging scheme. The first la- 

el sequence describes the “hasVulnerablity ” relation, where “Mi- 

rosoft VFP_OLE _Server ActiveX control ” is an entity of type “Soft- 

are ”, as the subject of the “hasVulnerablity ” relation; “CVE-2008- 

235 ” is an entity of type “Vulnerability ”, as the object of the 

hasVulnerablity ” relation. Through the label sequence, we can gen- 

rate the triple (“Microsoft VFP_OLE_Server ActiveX control ”, “hasVul- 

erability ”, “CVE-2008-0235 ”). Likewise, other label sequences can 

e used to generate triples of corresponding relations. If a rela- 

ion does not exist in a sentence, the label sequence for that rela- 

ion will be all “O”. Besides, as we can see, the “attributedTo ” and 

uses ” relations have the over-lapped entity “remote attackers ”, and 

hey can be extracted without conflict based on the separate label 

equences. 

.2.3. Multiple sequence labeling model 

Based on the tagging scheme above, we propose an end-to-end 

ultiple sequence labeling model to jointly extract cybersecurity 

ntities and relations. We take the sentence and a type of rela- 

ion as input to the model, and the output sequence holds infor- 

ation about the subject and object entities involved in that rela- 

ion. Thus, for a sentence, when we traverse all the relation types, 

he model generates a label sequence for each type of relation, re- 

ulting in a joint extraction of entities and relations. Figure 3 gives 

n overall structure of the model, which is divided into four parts. 

he embedding layer generates a word vector e t for each word 

 t in sentence X . In the encoding layer, the embedding sentence 

s fed into the bi-directional Gated Recurrent Units (BiGRU) neu- 

al network to generate a hidden state representation h t . Then we 

pply the attention mechanism to assign different weights to the 

ontext words under different relations and construct a relation- 

pecific sentence representation l k . Finally, in the decoding layer, 

e use another BiGRU neural network and joined it with CRF for 

ecoding to obtain the label sequence and extract corresponding 

ntities under the specific relation. 

Embedding 

Given a sentence as a sequence of tokens, the word embed- 

ing layer is responsible to map each token to a word vector. 

n this paper, we propose to use a pre-trained model to gener- 

te word vectors. The pre-trained word embedding model converts 

ords in natural language into dense vectors, and semantically 

imilar words will have similar vector representations. The latest 

re-trained model BERT ( Devlin et al., 2018 ) can solve the problem 
5 
f polysemy, generating different word vectors for the same word 

ccording to the context, which can better express the semantic 

eatures of the words. This situation often occurs in the cyberse- 

urity corpus. For a piece of software, when describing the vul- 

erabilities that exist in that software, this entity should then be 

ecognized as a “Software ” type, and the triple (“Software ”, “hasVul- 

erability ”, “Vulnerability ”) can be extracted. In another context, the 

oftware may be used as a tool by an attacker, at which point the 

ntity should be recognized as a “Tool ” type, and the triple (“Threat 

ctor ”, “uses ”, “Tool ”) can be extracted. So, we use the BERT model

o generate word embedding vectors in the embedding layer. For 

he input sentence X = { x 1 , x 2 , x 3 , . . . , x n } , where x t is the tth word

n the sentence. After the computation of the BERT pre-trained 

odel, the word embedding vector E = { e 1 , e 2 , e 3 , . . . , e n } of the

entence is generated, where e t is the word vector of the tth word 

n the sentence. 

Encoder Compared with the traditional recurrent neural net- 

ork (RNN), GRU consists of an update gate and a reset gate, 

hich can alleviate the gradient disappearance or explosion prob- 

em that occurs during training. The GRU hidden state h t is gen- 

rated by the previous hidden state h t−1 and the input e t of the 

urrent state together. The GRU only calculates the correlation be- 

ween time step t and the previous time step. However, in the cy- 

ersecurity corpus, entities may constitute relations with the en- 

ities before or after. So, for the word vectors generated by the 

mbedding layer, we further extract the semantic features of the 

entences H = { h 1 , h 2 , h 3 , . . . , h n } using BiGRU and then concate-

ate the forward and backward GRU hidden states as the contex- 

ual word representation. The transformations are as follows: 

 t = 

[ −−→ 

GRU (e t ) , 
←−−
GRU (e t ) 

] 
(1) 

Attention mechanism In the cybersecurity corpus, a sentence 

sually contains many entities and complex relations. As shown in 

ig. 2 , the sentence contains five different entities (“Vulnerability ”, 

Software ”, “Threat Actor ”, “Campaign ”, “Attack Pattern ”) and three 

ifferent relations (“hasVulnerability ”, “attributedTo ”, “uses ”). There- 

ore, it is necessary to assign different weights to the words in a 

entence according to different types of relations. For example, for 

he “hasVulnerability ” relation, the words in the sentence indicat- 

ng a software name or identifying a specific vulnerability should 

e paid higher attention to. Thus, we have referred to the relation- 

ased attention mechanism proposed by Yuan et al. (2020) . The 

ttention mechanism can assign different weights to the words in 

 sentence under each relation, and the attention score can be cal- 

ulated as follows: 

 g = a v g 
{

h 1 , h 2 , h 3 , . . . , h n 

}
(2) 
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Fig. 3. The multiple sequence labeling model for joint entity and relation extraction. It receives the same sentence input and different relation r k to extract all triples in the 

sentence. e t is the BERT embedding of the word, h t is the hidden vector of time step t , r k is the trainable embedding of the k th relation, l k is the attention weights under 

relation type r k . Under the given relation r k (Take hasVulnerability for example), the decoder extracts the corresponding entities of r k to generate triples ( PCRE, hasVulnerability, 

Buffer overflo w ). 
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 tk = v T tanh 

(
W r r k + W g h g + W h h t 

)
(3) 

 tk = 

exp ( e tk ) ∑ n 
j=1 exp 

(
e jk 

) (4) 

here h g indicates the global representation of the sentence, r k is 

he embedding of the k -th relation. v , W r , W g , and W h are all train-

ble parameters. The attention score generated reflects the impor- 

ance of the sentence’s words in the context as well as relational 

xpression in the current relation. The sentence representation l k 
nder the r k relation is generated by the weighted sum of the sen- 

ence words, which is calculated as shown in Eq. (5) . The atten- 

ion layer combines the generated l k and the sentence representa- 

ions output by the encoding layer as input to the decoding layer, 

s shown in Eq. (6) . 

 k = 

n ∑ 

t=1 

a tk h t (5) 

 

k 
t = h t � l k (6) 

Decoder The decoding layer generates the label sequences of 

he sentences under the r k relation and returns the relational 

riples through the tagging scheme described in Section 3.2.2 . 

e first used another BiGRU to produce sentence representa- 

ions H 

o = { h o 
1 
, h o 

2 
, h o 

3 
, . . . , h o n } and generate sequence scores Z =

 z 1 , z 2 , z 3 , . . . , z n } using features from the encoding and attention

ayers. The calculation process is as follows, where W is the pa- 

ameter: 

 

o 
t = 

[ −−→ 

GRU (h 

k 
t ) , 

←−−
GRU (h 

k 
t ) 

] 
(7) 

 t = W h 

o 
t (8) 

Next, the sequence is decoded by the CRF layer, which is able 

o obtain constrained rules from the training data, to ensure that 

he predicted cybersecurity entity labels are valid. The decoding 

rocess is shown as follows: 

core (Z, y ) = 

n ∑ 

t=0 

A y t ,y t+1 
+ 

n ∑ 

t=1 

Z t,y t (9) 
6 
p(y | Z) = 

exp (score (Z, y )) ∑ 

y ′ ∈ Y Z exp ( score ( Z, y ′ ) ) 
(10) 

 

∗ = arg max 
y ∈ Y Z 

score (Z, y ) (11) 

here A is the transition matrix between labels, score (Z, y ) is the

osition score, and p(y | Z) is the normalized probability function. 

inally, the label sequence y ∗ is generated. 

.3. Knowledge fusion based on improved levenshtein distance 

Knowledge fusion includes ontology-level fusion and entity- 

evel fusion. The ontology-level is only for structured data, and 

ost structured data exists in STIX format with equivalence classes 

nd relations in the UCO ontology. This section focuses on the 

ntity-level, which aims to determine whether entities from dif- 

erent data sources are the same object in reality. 

The knowledge graph constructed from a single data source has 

roblems such as low information coverage and imperfect entity 

ttributes, which are not desirable for further application on down- 

tream tasks. Entity-level fusion can fuse threat intelligence knowl- 

dge from different sources to form a more complete CKG. Existing 

ethods determine whether two entities are the same object by 

he features extracted from the entities, attributes, and relations. 

n addition to similarity-based approaches ( Azevedo et al., 2019; 

acoste-Julien et al., 2013 ), the mainstream approach in the gen- 

ral domain is embedding-based approaches ( Bordes et al., 2013; 

hen et al., 2016 ). However, since our framework aims to construct 

 preliminary CKG from scratch and mainly addresses threat in- 

elligence extraction, the extracted entities often have incomplete 

elations. Embedding-based methods generally perform knowledge 

usion on the mature knowledge graph, so they are not suitable in 

he early stage of building CKG. Piplai et al. (2020b) used the Lev- 

nshtein distance to calculate the similarity of entity names to per- 

orm entity fusion when constructing a knowledge graph for mal- 

are after action reports. Although this method is effective for en- 

ity fusion with name distortion, misspellings, etc., there is a draw- 

ack that can lead to many incorrect results. For example, “APT28”

nd “APT29” are two different “Threat Actor ” entities, but their Lev- 

nshtein distance is only 1, which causes the entity fusion algo- 

ithm to consider them as the same entity mistakenly. There are 
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Table 1 

Comparison results with the pipeline model. 

Models Precision Recall F1-score 

Pipeline model ( Pingle et al., 2019 ) 57.04% 67.80% 61.69% 

Joint model 82.28 % 80.48 % 81.37 % 

Table 2 

Comparison results with the joint model. 

Models Precision Recall F1-score 

NovelTag ( Zheng et al., 2017 ) 54.34% 57.87% 56.05% 

GraphRel ( Fu et al., 2019 ) 65.26% 58.30% 61.59% 

MultiHead ( Bekoulis et al., 2018 ) 77.76% 65.14% 70.89% 

Our Model 82.28 % 80.48 % 81.37 % 
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any other similar cases, for example, two IP addresses with only 

ne digit difference. 

In order to perform knowledge fusion as accurately as possi- 

le, we propose a knowledge fusion method based on an improved 

evenshtein distance for the characteristics of the cybersecurity 

orpus. Compared to embedding-based knowledge fusion meth- 

ds, this algorithm does not need to store entity embeddings and 

odel parameters. We find that the above errors are mainly caused 

y numbers which usually represent deterministic information in 

ntity naming. The Levenshtein distance is the minimum number 

f edit operations required to turn string a into string b. Editing 

perations include replace, insert and delete. In our improved Lev- 

nshtein distance, a larger penalty weight of w num 

is set for edit 

perations on numbers, and edit operations on other characters 

emain a weight of w other , where w num 

should be larger than the 

hreshold, which avoids the errors caused by the traditional Lev- 

nshtein distance. We use the dynamic programming algorithm to 

alculate the improved Levenshtein distance as follows. For strings 

 and b with lengths n and m respectively, i and j are the sub- 

cripts indicating the position of the corresponding strings. First, 

he distance matrix is initialized as shown in Eq. (12) . Then the 

istance of each position of the two strings is calculated iteratively 

s shown in Eq. (13) . In addition, the weight function is shown in

q. (14) . 

 (0 , 0) = 0 

 (i, 0) = D (i − 1 , 0) + W (a i ) (1 ≤ i ≤ n ) 
 (0 , j) = D (0 , j − 1) + W (b j ) (1 ≤ j ≤ m ) 

(12) 

 (i, j) = min 

⎧ ⎪ ⎨ 

⎪ ⎩ 

D (i − 1 , j) + W (a i ) 
D (i, j − 1) + W (b j ) 
D (i − 1 , j − 1) + max (W (a i ) , W (b j )) (a i � = b j ) 
D (i − 1 , j − 1) (a i = b j ) 

(13) 

 (char) = 

{
w num 

if char is a number 
w other otherwise 

(14) 

With the final result D (n, m ) , we set a distance threshold and

dd the “sameAs ” relation between these two entities if their Lev- 

nshtein distance is less than the threshold. 

. Experiments 

.1. Datasets 

Our data is collected from publicly available open-source 

ntelligence (OSINT) data. It includes both structured and un- 

tructured data. The unstructured data comes from the CVE 

ulnerability database (vulnerability descriptions) ( MITRE, 2021 ), 

ecurity bulletins and APT reports ( CyberMonitor, 2021 ). 

tructured data comes from STIX format data provided by 

TT&CK Strom et al. (2018) , Unit 42 (2021) , MISP (2021) and 

atcherLab (2021) , etc. To train the joint extraction model, we 

sed the BRAT annotation platform ( Stenetorp et al., 2012 ) to an- 

otate the unstructured data, and further checked the annotation 

f the dataset based on our previous work ( Guo et al., 2021 ) to

mprove the annotation accuracy. We manually annotated 12,680 

entences containing a total of 67,918 cybersecurity triples. Then, 

e transform the annotated labels into the format described in 

ection 3.2.2 for futher training. In this paper, we take the “Threat 

ctor ” entity as an example to validate the knowledge fusion 

lgorithm. The knowledge fusion dataset we constructed is all 

sed to test the performance of the algorithm. We obtained a total 

f 698 “Threat Actor ” entities from different sources of STIX data 

nd manually annotated 560 “sameAs ” relations between them. 
7 
.2. Evaluation metrics 

We use standard Precision, Recall, and F1-score to measure the 

erformance. A triple is considered to be correctly extracted if and 

nly if its relation type and both entities are correctly matched. 

.3. Experimental settings 

To evaluate the effectiveness of the joint extraction model, we 

esign a set of experiments. In the comparison experiments with 

he pipeline approach, we compare our model with the existing 

ipeline model RelExt ( Pingle et al., 2019 ), where parameters that 

re not mentioned in the paper are set by default. Because an en- 

ity may consist of many words, we generate word vectors for each 

ord and average these word vectors to obtain the fixed dimen- 

ional embedding described in the RelExt paper. Besides, to fur- 

her analyze our proposed model, we compare the preprocessing 

ethods, the word embedding models and the choice of neural 

etworks. Also to test whether the model is effective on a smaller 

raining set, we experimented with different training set division 

atios. We use a 5-fold cross-validation to train the model. The size 

f the BERT word vector is 768 dimensions. The size of the BiGRU 

idden layer and relational embedding vector are both set to 300. 

uring the training process, the optimizer is RMSprop, the learn- 

ng rate is 0.0 0 01, and the batch_size is 64. we use the dropout

echanism to avoid overfitting with a rate of 0.5. 

.4. Joint entity and relation extraction experimental result 

.4.1. Comparison with pipeline model 

This section shows the results of the comparison between the 

raditional pipeline approach and the joint model. From Table 1 , 

e can see that our joint model outperforms the pipeline model, 

ignificantly improving precision (82.28%), recall (80.48%), and F1- 

core (81.37%). This indicates that the joint model extracts both en- 

ities and relations, which avoids the error propagation between 

he two subtasks of the pipeline model and effectively improves 

he performance of entity-relation triples extraction. 

.4.2. Comparison with joint model 

To corroborate the efficacy of our proposed model, we bench- 

ark it against established joint models ( Bekoulis et al., 2018; Fu 

t al., 2019; Zheng et al., 2017 ). As presented in Table 2 , our model

isplays a remarkable improvement over the compared models. 

his superior performance can be attributed to a meticulously pre- 

rocessing procedure, an effective word embedding approach, and 

 fitting tagging scheme tailored for the cybersecurity corpus. For 

 more thorough exploration and understanding of its capabilities, 

e have carried out an array of detailed experiments, the results 

f which are discussed in Section 4.4.3 . 
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Table 3 

Analysis results of the proposed model. 

Models Precision Recall F1-score 

Our Model 82.28 % 80.48 % 81.37 % 

Model-NoSub 79.55% 78.18% 78.86% 

Model-W2V 79.41% 71.73% 75.37% 

Model-LSTM 82.06% 79.70% 80.86% 

Model-NoAtt 81.71% 79.36% 80.52% 
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Table 4 

Experimental results for different dataset splitting. 

Train-test split Precision Recall F1-score 

80%-20% 82.28% 80.48% 81.37% 

75%-25% 82.23% 79.87% 81.03% 

66%-34% 81.20% 79.16% 80.17% 

50%-50% 81.16% 78.69% 79.90% 
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.4.3. Analysis of the proposed model 

In the preprocessing approach experiments, as described in 

ection 3.2.1 , we replaced special entities such as IP, MAC, Hash, 

RL, Email, domain name, file name and file path. We experi- 

ented with the effect of not using this preprocessing method. 

s shown in Table 3 (“Model-NoSub”), the preprocessing approach 

f special information replacement is more effective, because spe- 

ial information replacement allows these entities with large dif- 

erences to be replaced with a unified expression form, which is 

eneficial to the extraction of semantics. 

In the word vector experiments, as the word vectors generated 

y the word embedding model serve as the input to the following 

odel, the quality of the word vectors has an important impact on 

he model performance. In this section, we experiment with two 

epresentative word embedding models, BERT ( Devlin et al., 2018 ) 

nd Word2Vec ( Mikolov et al., 2013 ), where the BERT model is the

cased L-12 H768 A-12” version, and the Word2Vec model is the 

GoogleNews- vectors-negative300” version. It can be seen from 

able 3 (“Model-W2V”) that using BERT for word embedding has 

 certain improvement compared to Word2Vec. This is attributed 

o the fact that BERT can generate different word vectors for the 

ame word depending on the context thus making better use of 

he contextual information of the text, while Word2Vec can only 

enerate a fixed word vector representation for each word. 

In the neural network model experiments, since we use neural 

etworks in our model for the sequence labeling task, we investi- 

ate the effect of different neural networks on the model perfor- 

ance. Specifically, we experiment with the performance of LSTM 

nd GRU neural networks in the joint extraction model. As shown 

n Table 3 (“Model-LSTM”), we found that the GRU performed 

lightly better than the LSTM, and therefore we take GRU in our 

odel. 

To demonstrate the role played by the attention mechanism in 

ur model, we further explored the effect of not using the atten- 
Fig. 4. Experimental results

8 
ion mechanism. From Table 3 (“Model-NoAtt”), we can tell that 

he attention mechanism slightly improve the performance by pro- 

iding a better reflection on the importance of the tokens under 

he specific relation. 

.4.4. Experimental results with different dataset splitting 

In this section, we conduct experiments using different dataset 

plitting, and the results show that the effectiveness of our model 

oes not drop significantly on a smaller training set ratio, as shown 

n Table 4 . This is because the cybersecurity corpus has some sim- 

larities in writing style, syntax, and use of terminology. For ex- 

mple, CVE vulnerability descriptions use similar syntax, and dif- 

erent APT reports may use the same terminology. In addition, we 

eplace special entities with unified forms of expression in the pre- 

rocessing stage, which also mitigates the problem of high vari- 

bility between data from different sources. 

.5. Knowledge fusion experimental results 

In this section, we take the “Threat Actor ” entity as an exam- 

le. We set the distance threshold to 0, 1, 2, and 3 for each ex-

eriment. The w num 

is set to 10 and the w other is set to 1. If the

istance between two entities is less than the threshold, we con- 

ider these two entities are the same entity. As shown in Fig. 4 ,

he Improved Levenshtein distance ( Fig. 4 a) outperforms the tradi- 

ional Levenshtein distance ( Fig. 4 b). The performance of the tradi- 

ional Levenshtein distance algorithm decreases significantly as the 

hreshold increases. This is because there are numbers involved in 

ybersecurity entity names (as described in Section 3.3 ), causing 

he traditional Levenshtein distance to produce a large number of 

rroneous results. In addition, as shown in Fig. 4 a, the algorithm is 

ound to introduce some false alarms as the threshold increases, 

o the threshold cannot be set too large, and it can be seen that 

he best results are obtained when the threshold is set to 1. Al- 

hough our algorithm does not consider more complex knowledge 
 of knowledge fusion. 
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Fig. 5. The effect of knowledge fusion. 
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usion cases, the algorithm can more accurately fuse entities in the 

rocess of constructing the CKG from scratch for naming distor- 

ions, misspellings, etc. 

.6. Analysis and discussion 

.6.1. Relation extraction case study 

In this section, we illustrate the advantages of the joint model 

ver the pipeline model by two examples, as shown in Ap- 

endix Table A1 . In both examples, our proposed joint model pre- 

icts all the triples in the sentences correctly. 

For Case 1, although the pipeline model correctly predicts all 

Software ” entities in the entity recognition task, when predict- 

ng the relation between two “Software ” entities, the model will 

ombine the two “Software ” entities into two entity pairs in dif- 

erent orders and predict two wrong relations. This indicates that 

he pipeline model does not take into account the connection be- 

ween entity recognition and relation extraction tasks, while the 

oint model is able to predict the “hasProduct ” relation between the 

wo “Software ” entities well. 

For Case 2, the pipeline model only recognizes the “zero- 

ay vulnerabilities/Vulnerability ” and “compromise victim sys- 

ems/Campaign ” entity but misses the “apt28/Threat Actor ” and 

spear phishing emails/Attack Pattern ” entities, resulting in a null 

nput to the relation extraction model that fails to predict the 

elation between them. This indicates that the pipeline model has 

he defect of error propagation, implying that if an entity is not 

redicted or is incorrectly predicted, it will affect the subsequent 

elation extraction task. 

.6.2. Knowledge fusion effect 

This section demonstrates the effect of knowledge fusion. As 

escribed in Section 3 , the framework extracts cybersecurity triples 

rom structured and unstructured data and performs knowledge 

usion. In the constructed knowledge graph, we query the data re- 

ated to the “APT28/Threat Actor ”, as shown in Fig. 5 . The left part

s constructed from structured data of various existing attack and 

efense knowledge bases; the right part is a set of cybersecurity 

riples extracted from unstructured data. Specifically, in the threat 
9 
ntelligence extraction, we use the joint extraction model to extract 

ntities and relations in sentences. For example, the entities and 

elations in the blue box of the right part of Fig. 5 are extracted 

rom the sentence at the bottom of the figure. In the knowledge 

usion, the framework fuses the extracted entities and the exist- 

ng entities in the knowledge graph using the algorithm described 

n Section 3.3 . For example, the “APT28/Threat Actor ” entity on the 

ight part of Fig. 5 is the same object as the “Threat Actor ” en- 

ity shown in the red box on the left part of Fig. 5 . Above all, our

ramework can fuse multi-source threat intelligence data to form a 

ore comprehensive CKG. 

. Conclusion 

In this paper, we propose a framework for threat intelligence 

xtraction and fusion, which extracts threat intelligence from 

tructured and unstructured data sources, and fuses threat intel- 

igence from different sources to form a preliminary CKG. For the 

nstructured data, we propose a joint entity and relation extrac- 

ion model for cybersecurity concepts, which can extract both en- 

ities and relations in the cybersecurity corpus. Specifically, we use 

 tagging scheme to convert the joint extraction problem into a 

ulti-sequence labeling problem by generating separate label se- 

uences for different relations, which contain information about 

he related entities and the subject and object of that relation. In 

ddition, the model employs the BERT model, BiGRU neural net- 

ork, and attention mechanism to extract the features of sen- 

ences. For the knowledge fusion, we propose an improved Lev- 

nshtein distance to fuse entities pointing to the same object from 

ifferent data sources. In the experimental section, our results on 

SINT data demonstrate that the joint model achieves better re- 

ults compared to the traditional pipeline approach. And the im- 

roved knowledge fusion also works better than the traditional 

evenshtein distance. The limitation of this study is that our frame- 

ork is mainly for threat intelligence extraction and simple knowl- 

dge fusion to construct a preliminary CKG. Therefore, to further 

onstruct a more effective CKG, our future work will focus on en- 

ity disambiguation, knowledge embedding, and knowledge infer- 

nce in cybersecurity. 
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ppendix A 
able A1 

he examples of the triples to the given sentences extracted by joint model and 

ipeline model. 

#Case 1 

Raw text CVE-2021-28967: The unofficial MATLAB extension before 

2.0.1 for Visual Studio Code allows attackers to execute 

arbitrary code via a crafted workspace because of lint 

configuration settings. 

Joint model 

(’attackers’, ’crafted workspace’, ’Threat Actor/Attack 

Pattern/uses’) 

(’attackers’, ’cve-2021-28967’, ’Threat 

Actor/Vulnerability/uses’) 

(’execute arbitrary code’, ’attackers’, ’Campaign/Threat 

Actor/attributedTo’) 

(’visual studio code’, ’unofficial matlab extension’, 

’Software/Software/hasProduct’) 

(’unofficial matlab extension’, ’cve-2021-28967’, 

’Software/Vulnerability/hasVulnerablity’) 

(’visual studio code’, ’cve-2021-28967’, 

’Software/Vulnerability/hasVulnerablity’) 

Pipeline model 

(’attackers’, ’crafted workspace’, ’Threat Actor/Attack 

Pattern/uses’) 

(’attackers’, ’cve-2021-28967’, ’Threat 

Actor/Vulnerability/uses’) 

(’unofficial matlab extension’, ’cve-2021-28967’, 

’Software/Vulnerability/hasVulnerablity’) 

(’visual studio code’, ’cve-2021-28967’, 

’Software/Vulnerability/hasVulnerablity’) 

(’execute arbitrary code’, ’attackers’, ’Campaign/Threat 

Actor/attributedTo’) 

(’visual studio code’, ’unofficial matlab extension’, 

’Software/Software/uses’) 

(’unofficial matlab extension’, ’visual studio code’, 

’Software/Software/hasVulnerablity’) 

#Case 2 

Raw text APT28 relies upon spear phishing emails or zero-day 

vulnerabilities to initially compromise victim systems. 

Joint model 

(’apt28’, ’spear phishing emails’, ’Threat Actor/Attack 

Pattern/uses’) 

(’apt28’, ’zero-day vulnerabilities’, ’Threat 

Actor/Vulnerability/uses’) 

(’initially compromise victim systems’, ’apt28’, 

’Campaign/Threat Actor/attributedTo’) 

Pipeline model Only entities found zero-day vulnerabilities/Vulnerability 

compromise victim systems/Campaign 
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